

NORTHERN VIRGINIA STREAM RESTORATION BANK-BACKGROUND AND STATUS REPORT

Presented by Michael S. Rolband P.E., P.W.S., P.W.D.

Wetland Studies and Solutions, Inc. 5300 Wellington Branch Drive · Suite 100 · Gainesville · Virginia 20155 www.wetlandstudies.com

Wetland Studies And Solutions, Inc.

- Natural & Cultural Resource consulting firm
- 75 Staff
 - Archeology, Engineering, Environmental Science & Ecology, Environmental Technology, Compliance, GIS, Regulatory, Surveying, & Wildlife Biology

Wetland

Wetland Studies And Solutions, Inc.

Loudoun County Wetlands and Stream Bank - Phase II August 2008 (9 months after completion)

MITIGATION EXPERIENCE

- Developed 17 Mitigation Bank sites:
- \pm 900 acres of wetlands
- 140,000 lf of stream

Snakeden Branch – Reach 3

Wetland

ties and Solutions, In

WHAT IS MITIGATION BANKING ? HOW IT WORKS

By purchasing stream credits from the Bank Sponsor, the mitigation requirements of a permit for stream impacts is satisfied. Stream restorers use this pooled money to create much larger, well-designed, & ecologically valuable conservation projects.

Wetland

Adapted from The Washington Post, February 15, 1996

4

WHY A STREAM BANK IN RESTON ?

Wetland

dies and Solutions,

- Degrading streams are located in preserved corridors (without stormwater management) & mostly controlled by a single entity (Reston Association).
- Community members are actively involved in protecting local natural resources. <u>Watershed</u>
 <u>Subcommittee of the Citizen's</u>
 <u>Advisory Committee for the</u>
 <u>Environment and Ecology</u>
 publishes a white paper in 2000 -*"Reston's Watersheds: An* <u>Assessment of Conditions and</u>
 <u>Management Strategies</u>"
- Watershed Plan published in April 2002.

WHY A STREAM BANK IN RESTON ?

- Community of Reston includes entire watersheds.
- There is a demand for stream mitigation in the region.

The Approval Process Wetland Studies – Reston Association

House

Wetland

July 2000

• Watershed white paper published (*identifies need to improve watersheds*).

March 2002

• Reston Watershed Plan published

October 2003

- Letter of Intent signed with Reston
- Mitigation Banking Review Team (MBRT) Meeting requested.

December 2003

- MOA signed
 - \$250,000 Donation for Reston

THE APPROVAL PROCESS

MITIGATION BANKING INSTRUMENT

Wetlan

June 2004:

• Public Notice for Prospectus for the NVRSB.

October 2004 – February 2006:

- MBRT Review Process (COE, EPA, DEO, & USFWS) ٠
- VA State Law HB-2464 Approved: Defines "Natural Channel Design Concepts" in Code of Virginia.

July 2005:

Executive Order 90 Issued – "Improving Stream Health • and Water Quality by Restoring Streams Throughout the Commonwealth"

February 2006:

- DEQ & COE sign MBI for Phase I (~14 miles). ٠
- Phase II approximately 15 additional miles.

June 2006:

• Concept Plan Approved by DEQ & COE

DATA COLLECTION

Wetlan

dies and Solutions, In

- Obtained aerial photography and topography of Phase I watersheds.
- Investigated stream valleys for potential archeological sites.
- Survey located & tagged nearly 30,000 trees (≥ 4" dbh) *so far!*
- Surveyed channel profile and crosssections.
- Performed geomorphic analyses.
- Performed wetland delineations and obtained Jurisdictional Determinations (JD's).
- Installed water level and rain gages to aid in design.

9

DATA COLLECTION

EASEMENTS

Wetland

Two Types Required

- Deed of Temporary Easement – to allow for construction access and 10-yrs of monitoring and maintenance.
- 2. *Restoration Easement* to protect the stream and buffer in perpetuity.
- Most land in stream valleys owned by RA.

Green Areas – RA Property Orange Areas – Private Property

10

The Urban Watershed Problem

11

URBAN STREAM SYNDROME (USS)

• Total Phosphorus (TP), Total Nitrogen (TN), and Total Suspended Solids (TSS) flows downstream

Eroding meander bend adjacent to Wiehle Ave in Reston

Exposed sewer manhole – Reach 12 in Snakeden

Correcting the Problem

Option 1: Watershed Improvements- remove impervious areas

- Retrofit hard surfaces with pervious pavements- pervious concrete or pavers
- Retrofit buildings with green roofs

A reduction in impervious area results in a reduction in runoff

Green roof at WSSI

Correcting the Problem

Option 2: Watershed Improvements - stormwater management

- Provide conventional stormwater management facilities throughout the watershed
- Install low-impact development features- swales, rain gardens, green roofs, and pervious pavements

Conventional dry pond in Fairfax County

Green roof at WSSI

Water quality swale at WSSI

Wetland

Rain Garden at WSSI

14

Correcting the Problem

Option 2: Restore streams to handle these flowrates

Lowering the floodplain results in a larger project area

CONVENTIONAL STORMWATER SCENARIO

Assumptions:

- Storage volume based on 3,000 cubic ft per developed acre (1 yr, 24-hr release / 2 & 10 yr control)
- Average depth of 3 feet
- 20 foot grading/dam outside storage area

Dry Ponds in Fairfax County

Wetlan udies and Solutions, In

BIO-RETENTION SCENARIO

Assumptions:

- WQ Storage volume based on capturing $\frac{1}{2}$ inch of run-off per impervious area
- Underground detention for quantity control
- Maximum ponding depth of 6 inches
- Maximum drainage area of 1 acre
- Average drainage area of $\frac{2}{3}$ acre (developed)
- 10 foot grading/berm outside of storage area

Rain Garden at Mike Rolband's House

BIO-RETENTION SCENARIO

• 830 Bio-retention facilities

Results

• 36.7 acres disturbance from grading

Wetland udies and Solutions, Inc

WHY RESTORE ?

Wetland

Reconnect to the existing floodplain to:

- Slow velocities
- Increase evapotranspiration
- Remove pollutants (TP, TN, and TSS)
- Improve riparian habitat
- Restore groundwater levels

UVA Research Park – Charlottesville, VA

After planting

Stream relocation - 1999

Same stream - 2007

20

EXISTING CONDITIONS IN THE GLADE

EXISTING CONDITIONS IN THE GLADE

Existing Conditions In The Glade

EXISTING CONDITIONS IN THE GLADE Hunters Woods Plaza Reach 3 SOUT FREETOWNRD Hunters Woods PESTON CARTERINAL School STEPT REACH 1A ASE COLTS MECK RD REACH 1 OT MILL ROAD DR QUORN REACH 2 Fox Mill hopping Center REACH 3 LAWYERS RD THE GLADE LAWYERS ROAD WATERSHED FOXMILL RD CALKINS RD RIDERS LI Fox Mill Woods Park 25 Wetland Studies and Solutions, Inc.

EXISTING CONDITIONS IN THE GLADE

EXISTING CONDITIONS IN THE GLADE

DESIGN METHODOLOGY FOR URBAN STREAMS - NATURAL CHANNEL EVOLUTION -

Evolutionary process considers the channel's incision, bank stability, & sedimentation load (aggrading or degrading)

URBAN STREAM - DESIGN REALITIES

- 1. Significantly more flow than rural streams.
- 2. Significantly more "bankfull" events than in rural watersheds.
- 3. Given site constraints, reinforcement is necessary.
 - Rock structures using native diabase rock
 - Reinforced bed
 - Heavy planting densities native vegetation only

Snakeden Branch – Reach 3 (after 6 months)

McLean Place (after 4.5 yrs)

Wetland dies and Solutions, In

31

CONSTRUCTION - REACH 1

CONSTRUCTION – REACH 2

CONSTRUCTION – REACH 2

CONSTRUCTION – REACH 3

SNAKEDEN BRIDGES – REACH 3

36

Construction – Reach 12

TROPICAL STORM HANNA (9/06/08) 100-yr event (6.22" in 9 hours)

- Wetland Studies and Solutions, Inc.

TROPICAL STORM HANNA 2 - DAYS LATER

MONITORING AND MAINTENANCE

10-year monitoring program

- Streambed surveys
- Structure surveys
- Vegetation surveys
- Biological Surveys
- As-built for Reaches 1- 4 has been approved.

Must meet success criteria outlined in MBI – or fix!

Monitoring/Maintenance and Catastrophic Event Fund

How is it funded?

Catastrophic Event

- 5% of all sale proceeds placed in interest bearing account.
- \$5 million, plus interest.
- Available for RA use after 10-yr monitoring period.
- Currently *no funds* available unless paid with RA dues.

Monitoring and Maintenance

- 15% of all sales proceeds (\$15 million value).
- 1/10 released per year if stream criteria achieved.

SIZES OF STREAMS Vary by % I.C. and D.A.

Bankfull Width (ft)

Snakeden Branch (38%,863 ac)

Reach	Width (ft)	Locator	
1	14	Top of Snakeden	
2	16 - 17.5		
3	17.5 - 22.5		
4	14 - 18	Deepwood Cluster Trib	
5	28		
6	14	Tribs to Snakeden	
6A	10		
6B	9		
7	28		
8	8.5		
8A	8.5	*	
9	30		
10	6 - 8.5		
11	32	Above Soapstone Dr	
12	34	Below Soapstone Dr	
13	20	South Lakes Trib	
14	9		
15	22		
16	26	+	
17	36	Above Lake Audubon	

The Glade (15%, 780 ac)

Reach	Width (ft)	Locator		
1	10	Steeplechase to Colts Neck		
1A	8.5	Trib to Reach 1		
2	13 - 18	Colts Neck to Steeplechase		
3	6 - 11	Joins Reach 2 at Steeplechase		
4A	16 - 19	Below Steeplechase		

- . . . Wetland Studies and Solutions, Inc.

STREAM RESTORATION DESIGN & MINIMIZING TREE IMPACTS

EXISTING CONDITIONS

STREAM RESTORATION DESIGN & MINIMIZING TREE IMPACTS THE DESIGN PROCESS, CONTINUED

Wetland

value trees and existing infrastructure (utilities, trails, etc.). Revise restoration design to further minimize tree impacts (typically several iterations).

Arborist and contractor field review to make final avoidance assessment.

Also, determine access preferably by existing trails and sewers to minimize impacts.

45

STREAM RESTORATION DESIGN & MINIMIZING TREE IMPACTS

TREE IMPACT CONSIDERATIONS

Ecological / Habitat Value

- Size / Diameter
- Higher Climax species: Oaks, Hickory, Holly (*mast producers, long-lived;* <u>12%</u> of existing).
- Lower Early successional species: Maples, Poplar (*fast-growing, short-lived*; <u>65%</u> of existing species).

Existing Condition

- Undercut by stream, high proportion of exposed roots, short life expectancy
- Dead, dying, diseased, or damaged trees that pose a human safety hazard
- Impacting or pending impact to infrastructure (utilities, roads, trails, etc.)

Proposed Condition

• Drip line heavily impacted during restoration, minimal chance of survival, AND

Netlan

es and Solutions

• Human safety hazard to trails, houses, bridges, etc.

STREAM RESTORATION DESIGN & MINIMIZING TREE IMPACTS

SHORT TERM IMPACT FOR LONG TERM BENEFIT

- **Cleared trees "recycled"** as in-stream habitat, grade control, wood-chip trails, habitat "brush" piles, timber products
- **Restoration raises the water table,** (raises stream bed) which increases stream access to floodplain and nutrient delivery to roots.
- Healthier ecosystem will develop with the density and species variety of replacement plantings
 - Mosquito population control via predator habitat
 - Dense streambank planting will provide shade, reduce water temperatures, increase oxygenation, increase fish survivability
 - Dragonfly larva molting access via heavily planted streambank with shallower slope

47

• **Canopy loss will close** as remaining trees adjust and react to increased sunlight, growing to fill in openings

FEWER TREES CUT = LOWER RESTORATION COST

• **Tree-climbing removal method** vs. traditional forestry timbering *(minimize impacts to neighboring trees)* is expensive.

Wetlan

ues and Solutions.

RESTORATION AREA PLANTINGS

- Seed mix includes 6 grass, 21 forb,
 5 shrub and 5 tree species
- Plantings include 8 tree and 10 shrub species
- Riparian Forest: 640 trees/shrubs per acre
- Streamside:
 - 1 gallon container 3' O.C.
 - live stake/tubling 1' O.C.
- Increased sunlight on forest floor
- Edge effect established

Oxeye Sunflower

Eastern Redbud

GREATER WILDLIFE SPECIES RICHNESS

- Mature forest continues to provide habitat for raptors, wood peckers, bats and deer
- Recently planted areas provide habitat for small mammals, song birds, fox and deer
- All species benefit from the "edge effect"
- Restored stream allows detrital input to be processed, thus increasing stream health and function

Cottontail Rabbit

Red-shouldered Hawk

Orchard Oriole

IMPROVED AQUATIC HABITAT VALUE

- 1,423 linear feet of Sycolin Creek were restored summer and fall of 2007.
- Long-term biological stream monitoring habitat and benthic macroinvertebrates.
- 2008 Results stream habitat and the benthic macroinvertebrates have improved since restoration attributed to the establishment of riparian vegetation, the stability of the bioengineered banks, and improved geomorphology.

Wetland

Mayfly Larvae

50

TREE SUMMARY

The Glade Watershed

Reston Association Area	208.4	acres
Church Easement Area	9.06	acres
Total Area	217.5	acres
Estimated Number of Trees	25,259	trees
(based on total area tree density)		
Acres in Tree Survey	82.4	acres
Number of Trees	9,573	trees
Tree Density	116	trees/acre
Limits of Clearing 1-3, 4A (LOC)	17.19	acres
Total Trees Within LOC	1,848	trees

Snakeden Watershed					
Reston Association Area	117.1	acres			
Cluster Easement Area	52.6	acres			
Total Area	169.72	acres			
Estimated Number of Trees	28,876	trees			
(based on total area tree density)					
Acres in Tree Survey	63.8	acres			
Number of Trees	10,852	trees			
Tree Density	170	trees/acre			
Limits of Clearing	28.9	acres			
Total Trees Within LOC	3,264	trees			

Snakeden Post Construction Results							
				Number of	% of		
			Density	Trees	Trees		
Reach	Area (Ac.)	Trees	(trees/ac.)	Taken	Taken		
6A	0.47	71	150	43	61%		
8A	0.48	78	161	19	24%		
Totals	0.96	149	155	62	42%		

Old Horse Arena Existing Conditions

Upstream Inlet

Downstream Outlet

Wetland Studies and Solutions, Inc.

Old Horse Arena Existing Conditions

Looking Downstream

Looking Toward Steeplechase Drive

Wetland Studies and Solutions, Inc.

54

OLD HORSE ARENA - OPTION #1

OLD HORSE ARENA - OPTION #2

Conclusion

- 1. Reston streams are seriously degraded due to urbanization – a situation made even worse by a lack of stormwater management. An ideal place to establish the NVSRB.
- 2. Fully restored streams will provide longterm stability & financial benefits to the community:
 - Phase I: \$70 million Restoration
 - \$450,000 to Reston Association
 - \$950,000 to Friends of Reston
 - \$3 million of new bridges for Reston
 - Reduced dredging costs for RA lakes
 - \$5 million Catastrophic Event Fund
- 3. Short-term construction disturbance will provide long-term societal and ecological benefits to a heavily used, urban stream valley network.

Wetland

dies and Solutions,

